\(\int \frac {x^5}{a x+b x^3+c x^5} \, dx\) [81]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 179 \[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=\frac {x}{c}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \]

[Out]

x/c-1/2*arctan(x*2^(1/2)*c^(1/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2))*(b+(2*a*c-b^2)/(-4*a*c+b^2)^(1/2))/c^(3/2)*2^(1
/2)/(b-(-4*a*c+b^2)^(1/2))^(1/2)-1/2*arctan(x*2^(1/2)*c^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2))*(b+(-2*a*c+b^2)/(-
4*a*c+b^2)^(1/2))/c^(3/2)*2^(1/2)/(b+(-4*a*c+b^2)^(1/2))^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {1599, 1136, 1180, 211} \[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}+b\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {\sqrt {b^2-4 a c}+b}}\right )}{\sqrt {2} c^{3/2} \sqrt {\sqrt {b^2-4 a c}+b}}+\frac {x}{c} \]

[In]

Int[x^5/(a*x + b*x^3 + c*x^5),x]

[Out]

x/c - ((b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]
*c^(3/2)*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - ((b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt
[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 1136

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d^3*(d*x)^(m - 3)*((a + b*
x^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 1))), x] - Dist[d^4/(c*(m + 4*p + 1)), Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b
*(m + 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && Gt
Q[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1180

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 1599

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^4}{a+b x^2+c x^4} \, dx \\ & = \frac {x}{c}-\frac {\int \frac {a+b x^2}{a+b x^2+c x^4} \, dx}{c} \\ & = \frac {x}{c}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}-\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c}-\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {1}{\frac {b}{2}+\frac {1}{2} \sqrt {b^2-4 a c}+c x^2} \, dx}{2 c} \\ & = \frac {x}{c}-\frac {\left (b-\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (b+\frac {b^2-2 a c}{\sqrt {b^2-4 a c}}\right ) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b+\sqrt {b^2-4 a c}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.13 \[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=\frac {x}{c}-\frac {\left (-b^2+2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b-\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b^2-4 a c} \sqrt {b-\sqrt {b^2-4 a c}}}-\frac {\left (b^2-2 a c+b \sqrt {b^2-4 a c}\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2-4 a c}}}\right )}{\sqrt {2} c^{3/2} \sqrt {b^2-4 a c} \sqrt {b+\sqrt {b^2-4 a c}}} \]

[In]

Integrate[x^5/(a*x + b*x^3 + c*x^5),x]

[Out]

x/c - ((-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*
c^(3/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - ((b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*
Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*c^(3/2)*Sqrt[b^2 - 4*a*c]*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.07 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.32

method result size
risch \(\frac {x}{c}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+\textit {\_Z}^{2} b +a \right )}{\sum }\frac {\left (-\textit {\_R}^{2} b -a \right ) \ln \left (x -\textit {\_R} \right )}{2 c \,\textit {\_R}^{3}+\textit {\_R} b}}{2 c}\) \(57\)
default \(\frac {x}{c}+\frac {\left (-b \sqrt {-4 a c +b^{2}}+2 a c -b^{2}\right ) \sqrt {2}\, \arctan \left (\frac {c x \sqrt {2}}{\sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {-4 a c +b^{2}}\, c \sqrt {\left (b +\sqrt {-4 a c +b^{2}}\right ) c}}-\frac {\left (b^{2}-2 a c -b \sqrt {-4 a c +b^{2}}\right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {c x \sqrt {2}}{\sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\right )}{2 \sqrt {-4 a c +b^{2}}\, c \sqrt {\left (-b +\sqrt {-4 a c +b^{2}}\right ) c}}\) \(169\)

[In]

int(x^5/(c*x^5+b*x^3+a*x),x,method=_RETURNVERBOSE)

[Out]

x/c+1/2/c*sum((-_R^2*b-a)/(2*_R^3*c+_R*b)*ln(x-_R),_R=RootOf(_Z^4*c+_Z^2*b+a))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1059 vs. \(2 (143) = 286\).

Time = 0.27 (sec) , antiderivative size = 1059, normalized size of antiderivative = 5.92 \[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=-\frac {\sqrt {\frac {1}{2}} c \sqrt {-\frac {b^{3} - 3 \, a b c + {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}} \log \left (-2 \, {\left (a b^{2} - a^{2} c\right )} x + \sqrt {\frac {1}{2}} {\left (b^{4} - 5 \, a b^{2} c + 4 \, a^{2} c^{2} - {\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}\right )} \sqrt {-\frac {b^{3} - 3 \, a b c + {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}}\right ) - \sqrt {\frac {1}{2}} c \sqrt {-\frac {b^{3} - 3 \, a b c + {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}} \log \left (-2 \, {\left (a b^{2} - a^{2} c\right )} x - \sqrt {\frac {1}{2}} {\left (b^{4} - 5 \, a b^{2} c + 4 \, a^{2} c^{2} - {\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}\right )} \sqrt {-\frac {b^{3} - 3 \, a b c + {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}}\right ) + \sqrt {\frac {1}{2}} c \sqrt {-\frac {b^{3} - 3 \, a b c - {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}} \log \left (-2 \, {\left (a b^{2} - a^{2} c\right )} x + \sqrt {\frac {1}{2}} {\left (b^{4} - 5 \, a b^{2} c + 4 \, a^{2} c^{2} + {\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}\right )} \sqrt {-\frac {b^{3} - 3 \, a b c - {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}}\right ) - \sqrt {\frac {1}{2}} c \sqrt {-\frac {b^{3} - 3 \, a b c - {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}} \log \left (-2 \, {\left (a b^{2} - a^{2} c\right )} x - \sqrt {\frac {1}{2}} {\left (b^{4} - 5 \, a b^{2} c + 4 \, a^{2} c^{2} + {\left (b^{3} c^{3} - 4 \, a b c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}\right )} \sqrt {-\frac {b^{3} - 3 \, a b c - {\left (b^{2} c^{3} - 4 \, a c^{4}\right )} \sqrt {\frac {b^{4} - 2 \, a b^{2} c + a^{2} c^{2}}{b^{2} c^{6} - 4 \, a c^{7}}}}{b^{2} c^{3} - 4 \, a c^{4}}}\right ) - 2 \, x}{2 \, c} \]

[In]

integrate(x^5/(c*x^5+b*x^3+a*x),x, algorithm="fricas")

[Out]

-1/2*(sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c
^7)))/(b^2*c^3 - 4*a*c^4))*log(-2*(a*b^2 - a^2*c)*x + sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (b^3*c^3 - 4*a*
b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*sqrt(
(b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))) - sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c + (
b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-2*(a*b^2 -
 a^2*c)*x - sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 - (b^3*c^3 - 4*a*b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b
^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c + (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a
*c^7)))/(b^2*c^3 - 4*a*c^4))) + sqrt(1/2)*c*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c +
 a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))*log(-2*(a*b^2 - a^2*c)*x + sqrt(1/2)*(b^4 - 5*a*b^2*c + 4
*a^2*c^2 + (b^3*c^3 - 4*a*b*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c -
 (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))) - sqrt(1/2)*
c*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 -
 4*a*c^4))*log(-2*(a*b^2 - a^2*c)*x - sqrt(1/2)*(b^4 - 5*a*b^2*c + 4*a^2*c^2 + (b^3*c^3 - 4*a*b*c^4)*sqrt((b^4
 - 2*a*b^2*c + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))*sqrt(-(b^3 - 3*a*b*c - (b^2*c^3 - 4*a*c^4)*sqrt((b^4 - 2*a*b^2*c
 + a^2*c^2)/(b^2*c^6 - 4*a*c^7)))/(b^2*c^3 - 4*a*c^4))) - 2*x)/c

Sympy [A] (verification not implemented)

Time = 1.20 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.72 \[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=\operatorname {RootSum} {\left (t^{4} \cdot \left (256 a^{2} c^{5} - 128 a b^{2} c^{4} + 16 b^{4} c^{3}\right ) + t^{2} \cdot \left (48 a^{2} b c^{2} - 28 a b^{3} c + 4 b^{5}\right ) + a^{3}, \left ( t \mapsto t \log {\left (x + \frac {32 t^{3} a b c^{4} - 8 t^{3} b^{3} c^{3} - 4 t a^{2} c^{2} + 8 t a b^{2} c - 2 t b^{4}}{a^{2} c - a b^{2}} \right )} \right )\right )} + \frac {x}{c} \]

[In]

integrate(x**5/(c*x**5+b*x**3+a*x),x)

[Out]

RootSum(_t**4*(256*a**2*c**5 - 128*a*b**2*c**4 + 16*b**4*c**3) + _t**2*(48*a**2*b*c**2 - 28*a*b**3*c + 4*b**5)
 + a**3, Lambda(_t, _t*log(x + (32*_t**3*a*b*c**4 - 8*_t**3*b**3*c**3 - 4*_t*a**2*c**2 + 8*_t*a*b**2*c - 2*_t*
b**4)/(a**2*c - a*b**2)))) + x/c

Maxima [F]

\[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=\int { \frac {x^{5}}{c x^{5} + b x^{3} + a x} \,d x } \]

[In]

integrate(x^5/(c*x^5+b*x^3+a*x),x, algorithm="maxima")

[Out]

x/c - integrate((b*x^2 + a)/(c*x^4 + b*x^2 + a), x)/c

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2109 vs. \(2 (143) = 286\).

Time = 0.56 (sec) , antiderivative size = 2109, normalized size of antiderivative = 11.78 \[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=\text {Too large to display} \]

[In]

integrate(x^5/(c*x^5+b*x^3+a*x),x, algorithm="giac")

[Out]

x/c - 1/8*(2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)
*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)
*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c
^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*
c + sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^
2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5 - (2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4
*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^3*
c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
+ sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqr
t(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c + sqrt(b
^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2 + 8*(b^2 - 4*a*c)*a*b*c^3)*c^2 + 2*(sqrt(2)*sqrt(b*c + sqrt(b
^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c + sqrt(b
^2 - 4*a*c)*c)*a*b^3*c^3 - 2*a*b^4*c^3 + 16*sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b
*c + sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 + 16*a^2*b^2*c^4 - 4*s
qrt(2)*sqrt(b*c + sqrt(b^2 - 4*a*c)*c)*a^2*c^5 - 32*a^3*c^5 + 2*(b^2 - 4*a*c)*a*b^2*c^3 - 8*(b^2 - 4*a*c)*a^2*
c^4)*abs(c))*arctan(2*sqrt(1/2)*x/sqrt((b*c + sqrt(b^2*c^2 - 4*a*c^3))/c^2))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a
*b^3*c^4 + 16*a^3*c^5 + 8*a^2*b*c^5 + a*b^2*c^5 - 4*a^2*c^6)*c^2) - 1/8*(2*b^5*c^4 - 12*a*b^3*c^5 + 16*a^2*b*c
^6 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5*c^2 + 6*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c
- sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^4*c^3 - 8*sqr
t(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 - 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt
(b^2 - 4*a*c)*c)*a*b^2*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^3*c^4 + 2*sqrt(2)*sqr
t(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^5 - 2*(b^2 - 4*a*c)*b^3*c^4 + 4*(b^2 - 4*a*c)*a*b*c^5 - (
2*b^5*c^2 - 16*a*b^3*c^3 + 32*a^2*b*c^4 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*b^5 + 8*sq
rt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c + 2*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(
b^2 - 4*a*c)*c)*b^4*c - 16*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^2 - 8*sqrt(2)*sqr
t(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^2 - sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a
*c)*c)*b^3*c^2 + 4*sqrt(2)*sqrt(b^2 - 4*a*c)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b*c^3 - 2*(b^2 - 4*a*c)*b^3*c^2
 + 8*(b^2 - 4*a*c)*a*b*c^3)*c^2 + 2*(sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^4*c^2 - 8*sqrt(2)*sqrt(b*c -
sqrt(b^2 - 4*a*c)*c)*a^2*b^2*c^3 - 2*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^3*c^3 + 2*a*b^4*c^3 + 16*sqrt
(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^3*c^4 + 8*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*b*c^4 + sqrt(2)*sq
rt(b*c - sqrt(b^2 - 4*a*c)*c)*a*b^2*c^4 - 16*a^2*b^2*c^4 - 4*sqrt(2)*sqrt(b*c - sqrt(b^2 - 4*a*c)*c)*a^2*c^5 +
 32*a^3*c^5 - 2*(b^2 - 4*a*c)*a*b^2*c^3 + 8*(b^2 - 4*a*c)*a^2*c^4)*abs(c))*arctan(2*sqrt(1/2)*x/sqrt((b*c - sq
rt(b^2*c^2 - 4*a*c^3))/c^2))/((a*b^4*c^3 - 8*a^2*b^2*c^4 - 2*a*b^3*c^4 + 16*a^3*c^5 + 8*a^2*b*c^5 + a*b^2*c^5
- 4*a^2*c^6)*c^2)

Mupad [B] (verification not implemented)

Time = 8.86 (sec) , antiderivative size = 3026, normalized size of antiderivative = 16.91 \[ \int \frac {x^5}{a x+b x^3+c x^5} \, dx=\text {Too large to display} \]

[In]

int(x^5/(a*x + b*x^3 + c*x^5),x)

[Out]

x/c - atan(((((16*a^2*c^3 - 4*a*b^2*c^2)/c - (2*x*(4*b^3*c^3 - 16*a*b*c^4)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/
2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))
/c)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^
2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) - (2*x*(b^4 + 2*a^2*c^2 - 4*a*b^2*c))/c)*(-(b^5 + b^2*(-(4*a*c - b^2)^3
)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(
1/2)*1i - (((16*a^2*c^3 - 4*a*b^2*c^2)/c + (2*x*(4*b^3*c^3 - 16*a*b*c^4)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2)
 + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c
)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*
c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) + (2*x*(b^4 + 2*a^2*c^2 - 4*a*b^2*c))/c)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^
(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/
2)*1i)/((((16*a^2*c^3 - 4*a*b^2*c^2)/c - (2*x*(4*b^3*c^3 - 16*a*b*c^4)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) +
 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*
(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^
5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) - (2*x*(b^4 + 2*a^2*c^2 - 4*a*b^2*c))/c)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1
/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2)
 + (((16*a^2*c^3 - 4*a*b^2*c^2)/c + (2*x*(4*b^3*c^3 - 16*a*b*c^4)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a
^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*(-(b^
5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b
^4*c^3 - 8*a*b^2*c^4)))^(1/2) + (2*x*(b^4 + 2*a^2*c^2 - 4*a*b^2*c))/c)*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) +
 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) + (2
*a^2*b)/c))*(-(b^5 + b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c - a*c*(-(4*a*c - b^2)^3)^(1/2))/(
8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2)*2i - atan(((((16*a^2*c^3 - 4*a*b^2*c^2)/c - (2*x*(4*b^3*c^3 - 1
6*a*b*c^4)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8
*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b
^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) - (2*x*(b^4 + 2*a^2*c^2 -
 4*a*b^2*c))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2
))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2)*1i - (((16*a^2*c^3 - 4*a*b^2*c^2)/c + (2*x*(4*b^3*c^3 - 16*
a*b*c^4)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(
16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3
*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) + (2*x*(b^4 + 2*a^2*c^2 - 4
*a*b^2*c))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))
/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2)*1i)/((((16*a^2*c^3 - 4*a*b^2*c^2)/c - (2*x*(4*b^3*c^3 - 16*a*
b*c^4)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16
*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c
 + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) - (2*x*(b^4 + 2*a^2*c^2 - 4*a
*b^2*c))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(
8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) + (((16*a^2*c^3 - 4*a*b^2*c^2)/c + (2*x*(4*b^3*c^3 - 16*a*b*c^4
)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*
c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*
c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) + (2*x*(b^4 + 2*a^2*c^2 - 4*a*b^2*
c))/c)*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16
*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2) + (2*a^2*b)/c))*(-(b^5 - b^2*(-(4*a*c - b^2)^3)^(1/2) + 12*a^2*b*c^2
 - 7*a*b^3*c + a*c*(-(4*a*c - b^2)^3)^(1/2))/(8*(16*a^2*c^5 + b^4*c^3 - 8*a*b^2*c^4)))^(1/2)*2i